Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Braz. arch. biol. technol ; 61: e17160728, 2018. tab, graf
Article in English | LILACS | ID: biblio-951517

ABSTRACT

ABSTRACT Oxidative stress, being the main cause of most of the human diseases, has always been the highlight of research worldwide. This stress can be overcome by administration of natural polyphenols. The Acacia catechu Willd. has many refrences available in Ayurveda as important disease curative plant. Its leaves are investigated for ameliorating oxidative stress in present work. Leaves of A. catechu were extracted with 80% methanol to get methanol extract (AME). It was assessed for antioxidant activity using DPPH, ABTS, CUPRAC, ferric ion reducing, superoxide scavenging and peroxyl radical scavenging assays. DNA protective activity was also investigated using plasmid nicking assay. Further, antiproliferative activity was determined using MTT assay in various human cancer cell lines. The quantification of polyphenols was done by UHPLC analysis. Results confirmed that polyphenols of A. catechu were successful in normalizing oxidative stress. AME was found to be most effective in scavenging ABTS radicals while least effective in scavenging ferric ions. UHPLC analysis showed abundance of ellagic acid, rutin and quercetin in AME. Further, AME showed maximum antiproliferative activity against Hep G2 cancer cells. It is concluded that the polyphenols from A. catechu effectively remediates oxidative stress and hence can be used in curing numerous dreadful diseases.

2.
Braz. arch. biol. technol ; 60: e17160728, 2017. tab, graf
Article in English | LILACS | ID: biblio-951490

ABSTRACT

ABSTRACT Oxidative stress, being the main cause of most of the human diseases, has always been the highlight of research worldwide. This stress can be overcome by administration of natural polyphenols. The Acacia catechu Willd. has many refrences available in Ayurveda as important disease curative plant. Its leaves are investigated for ameliorating oxidative stress in present work. Leaves of A. catechu were extracted with 80% methanol to get methanol extract (AME). It was assessed for antioxidant activity using DPPH, ABTS, CUPRAC, ferric ion reducing, superoxide scavenging and peroxyl radical scavenging assays. DNA protective activity was also investigated using plasmid nicking assay. Further, antiproliferative activity was determined using MTT assay in various human cancer cell lines. The quantification of polyphenols was done by UHPLC analysis. Results confirmed that polyphenols of A. catechu were successful in normalizing oxidative stress. AME was found to be most effective in scavenging ABTS radicals while least effective in scavenging ferric ions. UHPLC analysis showed abundance of ellagic acid, rutin and quercetin in AME. Further, AME showed maximum antiproliferative activity against Hep G2 cancer cells. It is concluded that the polyphenols from A. catechu effectively remediates oxidative stress and hence can be used in curing numerous dreadful diseases.

3.
J Environ Biol ; 2011 May; 32(3): 363-367
Article in English | IMSEAR | ID: sea-146590

ABSTRACT

The rapid increase in population together with unplanned disposal of effluents from various industries has resulted in accumulation of various heavy metals like As, Cr, Cu, Hg, Ni, Pb and Zn in soil ecosystem which ultimately causes DNA damage in living systems. Considering this, the present study was designed to evaluate the content of various heavy metals (Cu, Cr, Co, Hg, Mn, Ni, Zn) and genotoxicity/mutagenicity of soil samples collected from the outskirts of two industries viz. zinc coating industry (SI) and copper sulphate manufacturing industry (SII) employing Allium root anaphase aberration assay (AlRAAA) and Ames assay. The physicochemical parameters like bulk density, water holding capacity, moisture content, pH, nitrates, phosphates and potassium were also estimated. It was observed that SI sample contained Ni (6.86 mg g-1), Zn (6.53 mg g-1), Co (5.05 mg g-1) and Cr (4.49 mg g-1), while SII contained Cu (32.86 mg g-1), Ni (9.66 mg g-1), Co (6.85 mg g-1) and Zn (5.41 mg g-1). In AlRAA assay, the percentage of cells with anaphase aberrations ranged from 3.63 to 10.67 and 0.38 to 4.83% for samples SI and SII, respectively. In Ames test, sample SII was found to be lethal to Salmonella tester strains at all concentrations used, while sample SI was found to be mutagenic in TA100 strains of Salmonella typhimurium. Sample SII was found to be strongly acidic with pH 3.46. The present study focuses on the increasing heavy metal pollution in Amritsar city due to industrial discharges over lands and also infers that both bioassays Ames and AlRAAA can serve as first alert indication of pollution.

SELECTION OF CITATIONS
SEARCH DETAIL